When the whole becomes more than the sum of its parts

You may have heard the saying, ‘the whole is greater than the sum of its parts’ a quote attributed to Aristotle’s Metaphysics Book VIII. Many consider this to mean that a single thing made of many separate parts can be of more value than the individual parts on their own.  However, I subscribe to the interpretation that Aristotle was referring to the mysterious properties of ‘emergence’. Emergence describes the idea that whole things can exhibit special properties which are meaningful only when attributed to the whole as they do not exist in the separated parts.  This idea can be applied to collective behaviours and systems and, at least from a system engineering point of view, can also be intangible and difficult to replicate. In this case, the whole becomes something besides the parts which is a more accurate translation of Aristotle’s words.

Over the last seven years, Australia’s first Defence Cooperative Research Centre Trusted Autonomous Systems (TAS), has provided evidence to support the validity and value of emergence.  TAS has brought together and led the ‘parts’ – industry and academia – to enable the creation and conversion of Intellectual Property (IP) to capability in Defence. In doing so, and over time, a system of common behaviour, purity of mission, and focus has also emerged which has been an important factor in the success rate of translating this innovation into Defence capability.

For example, Consunet is a world-leading provider of cyber and spectrum security systems and one of TAS’ valued partners in developing and delivering capability for Defence. In 2019, Consunet developed its Distributed aUtonomous Spectrum managemenT system, known as DUST, as part of a four-year research and development collaboration with several Australian universities and the @Defence Science and Technology Group, supported by Next Generation Technologies Fund (NGTF) investment from TAS. DUST utilises machine learning and artificial intelligence to plan and allocate radio spectrum usage to achieve optimised spectrum utilisation in congested and contested environments, and has been incorporated into the proposed Joint Air Battle Management System for AIR6500. This innovation brings a wealth of Australian-developed AI and cyber security spectrum management expertise to Defence’s Joint Air Battle Management System – AIR6500-1 program.

Another example of the value of collaboration has been TAS’ partnership with Athena AI, a Queensland-based company that evolved through the NGTF-funded Joint Autonomous UAS Effects (JAUASE) project investment. Athena AI grew from a TAS introduction and investment in Skyborne Technologies and Cyborg Dynamics Engineering along with TAS’ support of the technical, ethical and legal elements of the project. This project developed autonomous live reconnaissance effects assessment using AI and machine vision for day and night Unmanned Aircraft Systems (UAS) operations over land. Commercial sales for Athena AI continue to grow, with Athena AI recently signing a deal with three Original Equipment Manufacturers (OEMs) to supply to the US Department of Defense, signalling Athena’s growing global profile.

The outcomes of the Consunet and JAUASE projects would not have been possible without TAS’ leadership. These are but two examples of TAS’ skill in bringing together the expertise of universities and industry to deliver commercialisation of IP and grow Australia’s Defence capability. TAS has proven its ability to facilitate partnerships across industry and academia to convert innovation to capability for Defence, and in doing so, has become something more than the sum of its programs.

I believe that TAS’ can continue to play its essential role in continuing to support industry and academic collaboration and we welcome discussion of opportunities to fund further innovation in Australia’s Defence industry.

Glen Schafer, TAS CEO